Cost min problem, continuous CES prod
Solve a cost minimization problem given a contunuous CES production function.
The cost min problem
Objective: Minimize the total cost:
\[C=\int_{i \in \mathcal{I}} p_i x_i d i\]Subject to the production constraint:
\[y = \left(\int_{i \in \mathcal{I}} x_i^{\frac{\sigma-1}{\sigma}} d i\right)^{\frac{\sigma}{\sigma-1}} \label{eq2}\]The problem is defined as:
\(\min C = \int_{i \in \mathcal{I}} p_i x_i d i \quad \text { s.t. } \left[ \int_{i\in \mathcal I } x_i ^{\frac{\sigma -1 }{\sigma }} di\right] ^{\frac{\sigma}{ \sigma - 1}} = y\) where,
- \(\mathcal I\) is the set of input varieties (goods)
- \(x_i\) is the demand of input variety \(i\)
- \(y\) is the output level
- \(p_i\) is the price of input variety \(i\).
Conditional input demand
The Lagrange function:
\[\mathcal{L}=\int_{i \in \mathcal{I}} p_i x_i d i-\lambda\left(\left(\int_{i \in \mathcal{I}} x_i^{\frac{\sigma-1}{\sigma}} d i\right)^{\frac{\sigma}{\sigma-1}}-y\right)\]FOC:
\[\frac{\delta \mathcal{L}}{\delta x_i}=p_i-\lambda \left[ \int_{i\in \mathcal I } x_i ^{\frac{\sigma -1 }{\sigma }} di\right] ^{\frac{1}{ \sigma - 1}} x_i^{-\frac{1}{\sigma}}\]Rearrange:
\[p_i = \lambda y^{\frac 1 \sigma}x_i^{-\frac{1}{\sigma}}\]Then, we can derived $x_i$ as a function of $y$ and $\lambda$.
\[x_i = \lambda ^ \sigma y / p_i^\sigma = \left(\frac{\lambda y ^\frac1\sigma}{p_i} \right)^\sigma \label{eq5}\]Substitute \((5)\) back into the production function \((2)\),
\[\begin{aligned} y & = \left[\int_{i \in \mathcal{I}} x_i^{\frac{\sigma-1}{\sigma}} d i\right]^{\frac{\sigma}{\sigma-1}} \\ y &= \left[\int_{i \in \mathcal{I}} \left(\frac{\lambda y ^\frac1\sigma}{p_i} \right)^{\sigma -1} d i\right]^{\frac{\sigma}{\sigma-1}} \\ y & = \lambda^\sigma y \left(\int p_i^{1-\sigma} di \right)^{\frac{\sigma }{\sigma -1 }} \end{aligned}\]Therefore we can derive \(\lambda = \left(\int p_i^{1-\sigma} di \right)^{\frac{1 }{1-\sigma }}\), plug this back into \((5)\), the conditional input demand is then,
\[x_i = \mathbb P ^\sigma p_i^{-\sigma } y\]where \(\mathbb P = \left(\int_{i \in \mathcal{I}} p_i^{1-\sigma} d i\right)^{\frac{1}{1-\sigma}} = \lambda\) is defined as the aggregate price index.
Cost function
We start by substituting the expression for \(x_i\) into the cost function \(C\) :
\[C=\int_{i \in \mathcal{I}} p_i x_i d i=\int_{i \in \mathcal{I}} p_i\left[y\left(\frac{p_i}{P}\right)^{-\sigma}\right] d i\]Since \(y\) and \(P^\sigma\) is constant with respect to \(i\), we can factor it out:
\[\begin{aligned} C(P,y) & =y \mathbb P^\sigma \int_{i \in \mathcal{I}} p_i^{1-\sigma} d i \\ & = y \mathbb P ^\sigma \mathbb P ^{1-\sigma} \\ &= y \mathbb P = y \left(\int_{i \in \mathcal{I}} p_i^{1-\sigma} d i\right)^{\frac{1}{1-\sigma}} \end{aligned}\]