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Estimation and prediction

Consider modeling the relationship between y and a single x.

y = f(x)
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Piecewise regression

® Piecewise regression breaks the input space into distinct
regions and fit a different relationship in each region.

M
Y= Bmbm(x)+e

® ¢(x) is called the basis function.
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Piecewise constant regression

Model: "
y = Zﬁmd)m(x) +e€

, where

qbl(X) (X < Cl)
dm(x) =1q Om(x) =Z(Cm-1 < x < Cp)
om(x) = I (Cu-1 < x)

, where C,, is called the knot point.

Thus, in this case
Bm = Ym
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Piecewise constant regression

## cut(x, 3)(-0.000504,0.333] cut(x, 3)(0.
## 0.9162606
## cut(x, 3)(0.666,1]

#it -0.4105306

333,0.666]
-1.2245036
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Piecewise polynomial regression

However, the basis function ¢(x) is not limited to
Z(Cm—1 < x < Cp). It can be polynomial of x.
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Piecewise polynomial regression

E.g. Piecewise linear regression.

4
y = BO + Z 5m¢m(X)I(Cm—1 <x < Cm)

m=1

Assuming Cp =0, =1
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Dealing with discontinuity

® The regression functions are discontinuous at knots.
® Modify the function form = continuous at knots.

Q1o +aiix +e€ x < G
a20+a21(x—C1)+6 G<x<G
a30+a31(x—C2)—|—6 G <x< @G
ago +asi(x — G)+e x> G
under the constraints that

a0 + a11G = ago

ang + a1 C1 = a3
a3p + @31 G = auo
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Piecewise polynomial regression

The model can be more flexible = Basis function can be
polynonial.

For higher order polynomial, we want something more than
Continuity, = that is Smoothness.

How it works? =- By requiring the derivatives of the piecewise
polynomials to be continuous at the knots.

This is called Regression Spline.
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Regression spline

A degree- d spline is a piecewise degree-d polynomial, with
continuity in derivatives up to degree d — 1 at each knot.
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Regression spline

For example, a degree - 3 spline (piecewise cubic) with only 1 knot
at x =C:

) a0+ anx +apx?+aizxd+e x < C
o 0420+O(21(X—C)+0422(X—C)2+0423(X—C)3+e x>C

under the constriants:

ato + a1 C+ Oé12C2 + Oé13C3 = g
a1 + 20(12C + 3@13C2
a1z +3a13C = ax

Q21

Polynomial, 15t and 2"¢ derivatives are continuous at knot.
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Regression spline
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B-spline basis function

® Defination: B-spline basis function of degree p

. 1 ifCn<x<Cnp
omo(x) = { 0 otherwise
—Cn Cn — X
$m,p(x) = Gmyp1(x) + P Gm+1,p—1(X)

Cm+p - Cm Cm+p+1 - Cm+1
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B-spline basis function

® Suppose x € [0, 3], and we have 2 knots, C; =1 and G, = 2.
Meanwhile, we let the boundary Cp = 0 and C3 = 3.
® degree 0 B- spline basis function:

B 1 ifC,<x< Cm+1
Om.o(x) = { 0 otherwise
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B-spline basis function

® degree 1 B-spline basis function

X — Cm Cm+2 — X
mi(x) = mo(X) + ——————n X
¢ :1( ) Cm+1 . Cm¢ ,O( ) Cm+2 _ Cm+1¢ +1,0( )
® For example,
. X — Co C2 — X
po,1(x) = o= Cocf)o,o(x) irous C1¢1,0(X)

= x0.0(x) + (2 — X)p1,0(x)
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phi20

B-spline basis function

® degree 2
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B-spline basis function
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Single x to multiple x

® Previous discussions focus on modeling the relationship
between y and a single x.

® How about extending it to mutiple x?
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Generalized additive model (GAM)

e GAM:
y=f+hila)+h()+ - f(xp)+e
, Where

M;
fi(x5) =Y Bim®jm (%))
m=1

® Each x; are allowed to take a regression spline form.
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Fitting algorithm

® Since each f; (x;) takes the regression spline form, the GAM is
analogous to a GLM.

® Parameters could be estimated with the same idea as the GLM.
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Fitting algorithm
M.
. For each j, fi (xj) = X 11 Bim®jm (x})
. Let M; be sufficiently large for over fitting.

. Maximize the log likelihood with a penalty to ‘departure
from smoothness '

max L( Z Aj /f//

. Since ffj-”(X)2dX = ﬁstjﬁj

A= argmaxg {E(ﬁ) - Z AjﬁTsjﬁ}
J

. X could be optained from Generalized cross validation.
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##
##
##
##
#Ht
##
#Hit
##
##
##
##
##
##
##
##
#t

Modeling Ozone Concentration in LA

Call:
Im(formula = 03 ~ temp + ibh + ibt, data = ozone)
Residuals:

Min 1Q Median 3Q Max
-11.3224 -3.1913 -0.2591 2.9635 13.2860
Coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) -7.7279822 1.6216623 -4.765 2.84e-06 ***

temp 0.3804408 0.0401582 9.474 < 2e-16 *xx
ibh -0.0011862 0.0002567 -4.621 5.52e-06 *x*x
ibt -0.0058215 0.0101793 -0.572 0.568
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' O.:
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Modeling Ozone Concentration in LA

temp effect plot ibh effect plot

ibteffect plot
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Modeling Ozone Concentration in LA
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Generalized additive models (GAM)

Actually, regression splines are not the only choice for f;(x;).

® For example, we can fit fi(x1) with linear regression, f2(x2) with
cubic, f3(x3) with random forest, f2(xs) with neural net, etc.
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How it works?

Recall GAM:
y:ﬁ)"‘f—l(xl)“‘762(X2)‘1""’[p(xp)“‘6
By Backfitting algorithm
1. Initialize each fi(x;).
2. Cycle from j=1,....,p,1,....,p, ...,
i=5 (><j7y_/30_zfi(xi))
i#j

, where S(x,y) means the smooth on data (x,y)
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Fitting algorithm - backward fitting

E.g. backward fitting for linear model

P
E[Y [ X]=2_ B
j=0

E[Y | Xk = x] = E[E[Y | X1, X2, .. Xy .. Xp] | Xec = xi]

p
=E Y 5X | Xk = x
j=o
= Bexk +E [ > B:X | X :Xk]
J#k

'the law of total expectation E[Y | X] = E[E[Y | X, Z] | X]
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Fitting algorithm - backward fitting

BkaZE[Y’Xk:Xk]—E

> BiXi | Xk = Xk]

JFk

Y - (Z @-Xj) | X = Xk]

J#k

Brxk = E

By doing regression on the equation above, we can estimate §y with
a single regression instead of doing a multiple regression.
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Backfitting algorithm - an example

True model
y = 20x{ — 16x? + 25sin(10x0) — 3x3 + €

Fit with
E(y) = a+ f(x) + f(x) + f(x3)

where fi is a regression spline, f> is a neural net, and f3 is a linear
regression.
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Backfitting algorithm - an example

while (err > 1e-3) {
alpha <- mean(mu)
mu <- y - alpha ## fitting alpha
data <- data.frame(mu,x1,x2,x3)
fitl <- gam(mu-~s(x1),data = data)
mu <- y - predict(fitl,data) ## fitting f1
data <- data.frame(mu,x1,x2,x3)
fit2 <- nnet(mu-~x2,data = data,size = 10,linout = T) ##
mu <- y - predict(fit2,data)
data <- data.frame(mu,x1,x2,x3)
fit3 <- lm(mu~x3+0,data = data) ## fitting f3
mu <- y - predict(fit3,data)
muall <- y -predict(fitl,data)-as.numeric(predict(fit2,d:
err <- sum((muall-mu0)~2)/n ## calculate MSE
mu0 <- muall
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Backfitting algorithm - an example

MSE

## Backward RF nnet linear
## [1,] 6.923679 0.4121533 0.8325506 4.221215
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