1 General equilibrium

Pareto Optimum

A feasible allocation x^{\ast} is called Pareto Optimal if no another feasible allocation x such that :

 $\forall i \quad u_i(x_i) \ge u_i(x_i^*)$

some $u_i(x_i) > u_i(x_i^*)$

Core

The core of an exchange economy with endowment e, denoted by C(e), is the set of all unblocked feasible allocations. In other words, an allocation $x \in F(e)$ is in core if no subset of individuals can block it.

Walrasian equilibrium

A competitive (Walrasian) equilibrium is a pair $\left(p,x\right)$ where x is a competitive allocation for p

2 Game Theory

Nash equlibrium

A pure action profile $a^* = (a_1^*, \dots, a_N^*)$ is a Nash equilibrium if for each player i,

 $u_i(a_i^*,a_{-i}^*) \ge u_i(a_i,a_{-i}^*)$ for every $a_i \in A_i$

That is $a_i^* \in BR(a_{-i}^*)$ for every $i \in N$ A mixed action profile $\sigma^* = (\sigma_1^*, \dots, \sigma_N^*)$ is a Nash equilibrium if for each player *i*,

 $BR(\sigma^*) \in BR(\sigma^*_{-i})$

That is $a_i \in BR(\sigma_{-i}^*)$ for every $a_i \in \text{Supp}(\sigma_i^*)$.

Belief

An assessment is strategy/condtional "belief" pair (σ, μ) where the function $\mu : X \to [0, 1]$, gives conditional beliefs of each information set including the trivial ones.

Sequential rationality

An assessment (σ, ν) is ""sequentially rational" if playing σ_i maximizes expected utility given μ for each player *i* at each of player *i*'s information sets

PBE

An assessment (σ, μ) is PBE, if

- it is sequential rational , and
- belief μ one given by Bayes's rule applied to Nature's move and to σ "Whenever possible"

BNE

Let T_1 (a finite set) be the set of possible types for player 1 and T_2 be the set of possible types for player 2. We define (s_1^*, s_2^*) to be a BNE if for every type t_i, s_i^* (t_i) solves

 $\max_{a_{i} \in A_{i}, t_{j} \in T_{j}} u_{i}\left(a_{i}, s_{-i}^{*}\left(t_{j}\right), t_{j}\right) \Pr_{i}\left(t_{j} \mid t_{i}\right)$

 $\Pr_i(t_j \mid t_i)$ is player *i* 's belief that the probability *j* is of type t_j given that *i* is type t_i .

3 Mechanism design and matching

direct mechanism

A direct mechanism is one in which $S_i = \Theta_i$ for each player *i* that is under a direct mechanism players are asked to report their types.

Individual rationality (IR)

A matching is IR if for **no** $i \in M \cup W$, such that

 $\emptyset P_i \mu(i)$

No blocking pairs (NBP)

A pair (m, w) block μ if

- $wP_m\mu(m)$
- $mP_w\mu(w)$

both two sides in this pair has no better options than their match. -> NBP

A matching μ is stable if it is IR and there is no pair man-woman that block μ .

4 Social Choice

Social choice function

$$f(R_1,\ldots,R_N)=R$$

, where R_i is the (weak) preference of the society. (This implies indifference may occur) and we use P_i denote the strict preference R is the soical preference

Arrow's axioms

- Unrestricted domain (**UD**): The social choice function *f* must consider any possible combination of individual preferences over *X* and gives an outcome.
- Weak Pareto principle (unonimity, everyone agrees): if xR_iy for $\forall i$ then xRy
- Independence of irrelevant alternatives (IIA) Let $R = f(R_1, \ldots, R_N)$ and $\tilde{R} = f(\tilde{R}_1, \ldots, \tilde{R}_N)$ and $x, y \in X$. If every individual rank x and ythe same way under R_i and \tilde{R}_i , then society rank x and y the same way under R and \tilde{R} .
- No dictatorship (ND) :There is no individual i such that for all $x, y \in X$, $xP_iy \Rightarrow xPy$ regardless of the preferences of the other individuals.