Protection for Sale: An Empirical Investigation

Pinelopi Koujianou Goldberg, Giovanni Maggi (1999, AER)

October 29, 2024

INTRO

Goldberg and Maggi (1999)

Research Questions:

- Is the Grossman-Helpman "Protection for Sale" model consistent with real-world data?
- What are the key structural parameters of the G-H model

Data:

CONSUMERS

The representative individual's preference:

$$U = c_0 + \sum_{i=1}^{n} u_i(c_i)$$
 (1)

The first order conditions of the utility max problem imply the inverse demand function:

$$p_i = u_i(c_i) \tag{2}$$

Let $d_i = [u'_i(c_i)]^{-1}$, then $c_i = d_i(p_i)$.

Plug back into the utility, derive the indirect utility function:

$$V = y_{i} - \sum_{i=1}^{n} p_{i}d_{i}(p_{i}) + \sum_{i=1}^{n} u_{i}(c_{i})$$

$$V = y_{i} + \sum_{i=1}^{n} s_{i}(p_{i}) \text{ ,where } S_{i}(p_{i}) = u_{i}(d_{i}(p_{i})) - p_{i}d_{i}(p_{i})$$
(3)

PRODUCTION

- There are n + 1 inputs: labor and one sector specific input for each sector.
- Each of the other goods is produced from labor and the sector specific input.
- $y_i(p_i)$ is the supply function of good i.
- $\pi_i(p_i)$: The returns to specific factor i.
- By Hotelling's lemma: $\pi'_i(p_i) = y_i(p_i)$.

AGGREGATE CONSUMER WELFARE

Aggregate the indirect utility, we obtain the aggregate consumer welfare:

$$W = \underbrace{1 + \sum_{i=1}^{n} \pi_i + \sum_{i=1}^{n} t_i^s \underbrace{M_i}_{i}}_{\text{Sum of aggregate income}} + \underbrace{\sum_{i=1}^{n} s_i}_{\text{Sum of utility}}$$
(4)

• $M_i = d_i - y_i$ is the net import.

POLITICAL STRUCTURE

In some sectors $L \subset \{1, 2, \dots n\}$ the owners of specific factors are able to form a lobby.

Let α_i denote the fraction of people that are able to form a lobby, they contribute C_i to the government.

Lobby *i*'s aggregate welfare:

$$W_i = \pi_i + \alpha_i \left(1 + \sum_{j=1}^n t_j^s M_j + \sum_{j=1}^n s_j \right).$$
 (5)

Then $W_i - C_i$ is the objective function of lobby i.

GOVERNMENT

Objective function:

$$U^{G} = \beta W + (1 - \beta) \sum_{i \in L}^{n} C_{i}$$

$$\tag{6}$$

where $\beta \in [0,1]$ captures the weight of welfare in the government's objective.

JOINT SURPLUS

The combination of consumer welfare and lobby's welfare:

$$\Omega = \beta W + (1 - \beta) \sum_{j \in L}^{n} W_j. \tag{7}$$

The equilibrium trade policy has the tariffs t_i^s for each sector and maximize Ω .

EQUILIBRIUM TRADE POLICY

$$\Omega = \beta W + (1 - \beta) \sum_{j \in L}^{n} W_{j}.$$

$$= \beta \left(1 + \sum_{i=1}^{n} \pi_{i} + \sum_{i=1}^{n} \tau_{i}^{s} M_{i} + \sum_{i=1}^{n} s_{i} \right) + (1 - \beta) \left[\sum_{i=1}^{n} I_{i} \pi_{i} + \alpha_{i} \left(1 + \sum_{j=1}^{n} \tau_{j}^{s} M_{j} + \sum_{j=1}^{n} s_{j} \right) \right]$$

$$= \beta + (1 - \beta) \alpha_{L} + \sum_{i=1}^{n} [\beta + (1 - \beta) I_{i}] \pi_{i} + \sum_{i=1}^{n} [\beta + (1 - \beta) \alpha_{L}] (t_{i}^{s} M_{i} + s_{i})$$
(8)

- $\alpha_L \equiv \sum_{i \in L} \alpha_i$ represents the share of population that owns some specific factor
- I_i is a dummy that takes value one if $i \in L$.

EQUILIBRIUM TRADE POLICY

Partial derivative w.r.t. τ_i^s :

$$\frac{\partial\Omega}{\partial t_{i}^{s}} = \frac{\partial\Omega}{\partial p_{i}} = (\beta + (1 - \beta)\alpha_{L}) \cdot M_{i} + (\beta + 1 - \beta)\alpha_{I}\tau_{i}^{s}\frac{\partial M_{i}}{\partial p_{i}} + (\beta + (1 - \beta)\alpha_{I})\frac{\partial s_{i}(p_{i})}{\partial p_{i}} + (\beta + (1 - \beta)I_{i}) \cdot \frac{\partial \pi_{i}}{\partial p_{i}} = 0$$

$$= (\beta + (1 - \beta)\alpha_{L})[M_{i} + \tau_{i}M'_{i}(p_{i}) - d_{i}(p_{i})] + (\beta + (1 - \beta)I_{i}) \cdot X_{i} = 0$$
(9)

We can solve for τ_i^s :

$$t_i^s = \frac{I_i - \alpha_L}{\frac{\beta}{1 - \beta} + \alpha_L} \cdot \frac{X_i}{-M_i'} \tag{10}$$

In terms of import elasticity $e_i = \frac{\partial p_i M_i}{\partial M_i p_i}$ and import-penetration ratio $z_i = \frac{M_i}{X_i}$:

$$\frac{t_i}{1+t_i} = \frac{I_i - \alpha_L}{\frac{\beta}{1-\beta} + \alpha_L} \cdot \frac{z_i}{e_i} \tag{11}$$

ECONOMETRIC MODEL

From (11),

$$\frac{t_i}{1+t_i}e_i = \frac{I_i - \alpha_L}{\frac{\beta}{1-\beta} + \alpha_L} \frac{X_i}{M_i} + \epsilon_i$$

$$= \gamma \frac{X_i}{M_i} + \delta I_i \frac{X_i}{M_i} + \epsilon_i$$
(12)

The theory predicts $\gamma = \frac{-\alpha_L}{\beta/(1-\beta)+\alpha_L} < 0$, $\delta = \frac{1}{\beta/(1-\beta)+\alpha_L} > 0$, and $\gamma + \delta > 0$.

With the estimates, we can recover the government's objective β and the fraction of population represented by a lobby α_L .

ECONOMETRIC MODEL IN USE

$$y_i^* = \frac{t_i^* e_i}{1 + t_i^*} = \gamma \frac{X_i}{M_i} + \delta I_i \frac{X_i}{M_i} + \epsilon_i \tag{13}$$

$$t_{i} = \begin{cases} \frac{1}{\mu} t_{i}^{*} & \text{if } 0 < t_{i}^{*} < \mu \\ 0 & \text{if } t_{i}^{*} \le 0 \\ 1 & \text{if } t_{i}^{*} \ge \mu \end{cases}$$
 (14)

$$\frac{X_i}{M_i} = \zeta_1' \mathbf{Z}_{1i} + u_{1i} \tag{15}$$

$$I_i^* = \zeta_2' \mathbf{Z}_{2i} + u_{2i} \tag{16}$$

$$I_{i} = \begin{cases} 1 & \text{if } I_{i}^{*} > 0\\ 0 & \text{if } I_{i}^{*} \leq 0 \end{cases}$$
 (17)

RESULTS

Table: Results From the Basic Specification (G-H Model)

Variable	$\mu = 1$	$\mu = 2$	$\mu = 3$
X_i/M_i	-0.0093	-0.0133	-0.0155
	(0.0040)	(0.0059)	(0.0070)
$(X_i/M_i)*I_i$	0.0106	0.0155	0.0186
	(0.0053)	(0.0077)	(0.0093)
Implied β	0.986	0.984	0.981
-	(0.005)	(0.007)	(0.009)
Implied α_L	0.883	0.858	0.840
	(0.223)	(0.217)	(0.214)

VARIABLES SHOULD NOT INFLUENCE PREDICTION

Table 2—Alternative Specifications ($\mu = 1$)

Variable	Specification 1 Log-likelihood: -134.9	Specification 2 Log-likelihood: -132.06	Specification 3 Log-likelihood: -132.04	Specification 4 Log-likelihood: -130.61
X_{i}/M_{i}	_	-0.0093 (0.0040)	-0.0096 (0.0043)	-0.0109 (0.0045)
$(X_i/M_i) * I_i$	_	0.0106 (0.0053)	0.0105 (0.0053)	0.0123 (0.0055)
Constant	-0.0640 (0.1104)		-0.0287 (0.1375)	-0.2619 (0.2559)
Unemployment	_	_		1.5722 (1.5884)
Employment size	_	_	_	1.1836 (0.8235)

Note: Dependent variable: $(t_i^*e_i/1 + t_i^*)$.

DIFFERENT THRESHOLD OF CONTRIBUTION

Table: Results from Using Alternative Thresholds to Define the Political-Organization Dummy

	Thresholds				
	\$50,000,000	0.1 percent of total contributions	0.1 percent of value added		
Variable	Percent of organized sectors: 74	Percent of organized sectors: 84	Percent of organized sectors: 85		
X_i/M_i	-0.0090	-0.1475	-0.0045		
	(0.0039)	(0.0664)	(0.0025)		
$(X_i/M_i) * I_i$	0.0099	0.1286	0.0075		
	(0.0054)	(0.0697)	(0.0074)		